DEPARTMENT OF MATHEMATICS

COURSE MODULE
 FOR
 MATHEMATICS (HONOURS) COURSE

Under Choice Based Credit System (CBCS) Effective from 2017-2018

Course : BMH1CC01

Calculus, Geometry \& Differential Equations(Marks: 75)

Total lecture hours: 60

Module-1: Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of type , , $(a x+b)_{n} \sin x,(a x+b)_{n} \cos x$, L'Hospital's rule, applications in business, economics and life sciences, 06 L

Module-2: Concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, $\mathbf{0 6} \mathbf{L}$

Module-3: Reduction formulae, derivations and illustrations of reduction formulae for the integration of $\sin n x, \cos n x, \tan n x, \sec n x,(\log x)_{n}, \sin _{n x} \sin m x, 06 L$

Module-4: Parametric equations, parametrizing a curve, arc length, arc length of parametric curves, area of surface of revolution.

Techniques of sketching conics. 06L

Module-5: Reflection properties of conics, translation and rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. 06L

Module-6: Spheres.Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid. 06L

Module-7: Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation.Exact differential equations and integrating factors, 06L

Module-8: separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations. 06L

Graphical Demonstration (Teaching Aid) 12L

Module-9

1. Plotting of graphs of function $e a x+b, \log (a x+b), 1 /(a x+b), \sin (a x+b), \cos (a x+b),|a x+b|$ and to illustrate the effect of a and b on the graph
2. Plotting the graphs of polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing them. 06 L

Module-10

3. Sketching parametric curves (Eg. Trochoid, cycloid, epicycloids, hypocycloid).
4. Obtaining surface of revolution of curves.
5. Tracing of conics in Cartesian coordinates/polar coordinates. 06L

Course : BMH1CC02

Algebra(Marks : 75)

Total lecture hours: 60

Module1 : Polar representation of complex numbers, n-th roots of unity, De Moivre's theorem for rational indices and its applications. Inequality: The inequality involving $A M \geq G M \geq H M$, CauchySchwartz inequality.9L

Module2: Theory of equations: Relation between roots and coefficients,Transformation of equation, Descartes rule of signs, Cubic and biquadratic equations, reciprocal equation,separation of the roots of equations,Strum's theorem $\mathbf{. 8 L}$

Module -3 : Equivalence relations and partitions, Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive integers, 7 L

Module -4 : Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers.Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.8L

Module -5: Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation $A x=b$, solution sets of linear systems, applications of linear systems, linear independence. $\mathbf{1 0 L}$

Module 6: Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Vector spaces, Subspaces of R_{n}, dimension of subspaces of R_{n}, 10L

Module 7: Rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix. 8L

DEPARTMENT OF MATHEMATICS

COURSE MODULE FOR
 MATHEMATICS (GENERAL) COURSE

Under Choice Based Credit System (CBCS) Effective from 2017-2018

Course : BMG1CC1A

Differential Calculus (Marks: 75)

Total lecture hours: $\mathbf{6 0}$

Module 1 : Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of functions, Successive differentiation, Leibnitz's theorem, 15L

Module 2 : Partial differentiation, Euler's theorem on homogeneous functions. 10L
Module 3 : Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.
Parametricrepresentation of curves and tracing of parametric curves, Polar coordinates and tracing of curvesin polar coordinates. 15L

Module 4 : Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and Cauchy's formsof remainder, Taylor's series, Maclaurin's series of $\sin \mathrm{x}, \cos \mathrm{x}, \mathrm{ex}, \log (1+\mathrm{x}),(1+\mathrm{x}) \mathrm{n}$, Maxima andMinima, Indeterminate forms. 20L

DEPARTMENT OF MATHEMATICS

COURSE MODULE IN SEM-II FOR
 MATHEMATICS (HONOURS) COURSE

Under Choice Based Credit System (CBCS)
Effective from 2017-2018

Course : BMH2CC03

Real Analysis (Marks : 75)

Total lecture hours: 60

Module-1: Review of Algebraic and Order Properties of \mathbb{R}, ε-neighbourhood of a point in \mathbb{R}. Idea of countable sets, uncountable sets and uncountabilityof \mathbb{R}. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of \mathbb{R} and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in \mathbb{R}, Intervals. 10L

Module-2: Limit points of a set, Isolated points, Open set, closed set,derivedset,Illustrations of BolzanoWeierstrass theorem for sets, compact sets in \mathbb{R},Heine-Borel Theorem. 10L

Module-3: Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, liminf, limsup. Limit Theorems. 06L

Module-4: Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria.Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences.Cauchy sequence, Cauchy's Convergence Criterion. 09L

Module-5: Infinite series, convergence and divergence of infinite series, Cauchy Criterion, Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. 10L

Module-6: Alternating series, Leibniz test. Absolute and Conditional convergence. 05L

Graphical Demonstration (Teaching Aid) 10L

Module-7:

1. Plotting of recursive sequences.
2. Study the convergence of sequences through plotting.
3. Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot. 05L

Module-8:

4. Study the convergence/divergence of infinite series by plotting their sequences of partial sum.
5. Cauchy's root test by plotting nth roots.

6 . Ratio test by plotting the ratio of nth and $(\mathrm{n}+1)$ th term. $\mathbf{0 5} \mathrm{L}$

Course : BMH2CC04

Differential Equation and Vector Calculus (Marks : 75)

Total lecture hours: 60

Module-1: Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications. 7L

Module-2: Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters. 13L

Module-3: Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients. 10L

Module-4: Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions. 10L

Module-5: Equilibrium points, Interpretation of the phase plane . Power series solution of a differential equation about an ordinary point, solution about a regular singular point. $\mathbf{6 L}$

Module-6:Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions. 10L

Module-7: Graphical Demonstration (Teaching Aid) : 4L

1. Plotting of family of curves which are solutions of second order differential equation.
2. Plotting of family of curves which are solutions of third order differential equation.

DEPARTMENT OF MATHEMATICS

COURSE MODULE IN SEM-II
 FOR
 MATHEMATICS (GENERAL) COURSE

Under Choice Based Credit System (CBCS)
 Effective from 2017-2018

Course :BMG2CC1B

Differential Equations (Marks : 75)

Total lecture hours: 60

Module-1: First order exact differential equations. Integrating factors, rules to find an integrating factor. First order higher degree equations solvable for $\mathrm{x}, \mathrm{y}, \mathrm{p} .7 \mathbf{L}$

Module-2: Methods for solving higher-order differential equations. Basic theory of linear differential equations, Wronskian, and its properties. Solving a differential equation by reducing its order. 13L

Module-3: Linear homogenous equations with constant coefficients, Linear non-homogenous equations, The method of variation of parameters, The Cauchy-Euler equation.10L

Module-4: Simultaneous differential equations, Total differential equations. 6L
Module-5: Order and degree of partial differential equations, Concept of linear and non-linear partial differential equations. 5L

Module-6: Formation of first order partial differential equations, Linear partial differential equation of first order, Lagrange's method, Charpit's method. 10L

Module-7: Classification of second order partial differential equations into elliptic, parabolic and hyperbolic through illustrations only. 9L

